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We consider dimensional crossover Ibr an O(N) Landau-Ginzburg-Wilson 
model on a d-dimensional film geometry of thickness L in the large-N limit. We 
calculate the full universal crossover scaling forms for the free energy and the 
equation of state. We compare the results obtained using "environmentally 
friendly" renormalization with those found using a direct, non-renormalization- 
group approach. A set of effective critical exponents are calculated and scaling 
laws for these exponents are shown to hold exactly, thereby yielding nontrivial 
relations between the various thermodynamic scaling functions. 
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1. I N T R O D U C T I O N  

Crossove r  b e h a v i o r - - t h e  in te rpo la t ion  between different effective degrees of  
f reedom as a funct ion of  s ca l e - - i s  a ub iqu i tous  p h e n o m e n o n  in nature.  
An impor tan t ,  exper imenta l ly  accessible example  is tha t  of  d imens iona l  
crossover ,  where a film of  thickness  L provides  a significantly different 
"env i ronmen t"  for f luctuat ions  to tha t  of  infinite space. By implement ing  a 
r enorma l i za t ion  p r o g r a m  which is explici t ly dependen t  on the re levant  
env i ronmen ta l  pa rame te r s  which induce the crossover ,  such as film thick-  
ness, one ob ta ins  a g lobal ly  defined r enorma l i za t ion  g roup  ( R G )  (an 
"env i ronmen ta l ly  fr iendly" R G )  whose character is t ic  funct ions in terpola te  
between those  of  different a sympto t i c  fixed po in ts  and  with which one can 
calcula te  c rossover  scal ing functions.  ~ Pe r tu rba t ive  ca lcula t ions  of  the 
logar i thmic  der iva t ives  of  such scal ing funct ions (effective exponents)121 gave 
results  which in te rpola te  between k n o w n  cri t ical  exponents  ~31 and agree well 
with lat t ice s imula t ions  ~41 and h igh- t empera tu re  series approx imat ions .  ~5~ 
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Exactly solvable models provide a useful testing ground for ideas on 
phase transitions and quantum field theory. To date the only truly exactly 
solvable models, in the sense that all correlation functions are calculable, 
in any dimension are the Gaussian and the spherical models ~6~ and variants 
of these. The former exhibits pathologies, such as the absence of an ordered 
phase, pathologies absent in the latter. After Stanley 17~ established the 
equivalence, for an infinite lattice, of the partition functions of the N =  
limit of the O(N) sigma model and the spherical model it was discussed 
from a field-theoretic point of view by Wilson, ~8~ whose analysis led to sub- 
sequent developments where the model served as the beginning point of a 
perturbative expansion in 1/N (see ref. 9 for a detailed set of reprints on 
this topic). The original lattice spherical model was solved for both strictly 
finite geometries and geometries exhibiting a dimensional crossover by 
Barber and Fisher. It~ Many generalizations have also received attention. 
For example, a generalization that includes long-range interactions has 
been studied for fully finite and cylindrical geometries ~tll (see Rudnick ~-'~ 
for a more recent discussion of the model in a purely finite geometry), 
while Allen and Pathria ~3j have recently studied the model's two-point 
correlation function. 

In this paper we wish to test environmentally friendly renormalization 
in the context of an exact model-- the limit N---, ov of an O(N) Landau-  
Ginzburg-Wilson model. This model is closely related to the spherical 
model and the O(N) sigma model, but it contains an additional parameter 
2 B, the ~p4 coupling, which away from the critical point governs the cross- 
over to mean-field behavior. It is the field-theoretic formulation that we 
discuss in the following, our interest being the model in a film geometry. 

The free energy scaling functions for the O(N) model in a film 
geometry with a variety of boundary conditions, but zero external field, 
have been obtained by Krech and Dietrich ~ 141 in an e expansion. For  N >  1 
their analysis had difficulties due to the presence of Goldstone modes for 
T <  T,.(ov). Our approach does not suffer from such difficulties and in this 
paper we obtain the exact scaling function incorporating both external field 
and temperature in the large-N limit. In the high-temperature regime and 
for dimensions sufficiently close to, but less than, four the e expansion 
results of ref. 14 are in qualitative agreement with the results presented 
here. 

The format of the paper is as follows: in Section 2 we give a brief over- 
view of the large-N limit. We then derive, via a saddlepoint evaluation of 
the partition function, the scaling functions which incorporate the dimen- 
sional crossover and the crossover to mean-field theory for the free energy 
and equation of state. We analyze in detail the universal scaling limit of 
these functions and compare with known results for the spherical model. In 
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Section 3 we analyze the model with the environmentally friendly RG 
approach and demonstrate how the results of Section 2 are recovered. In 
Section 4 we calculate a set of effective exponents which are scaling func- 
tions that describe the crossovers between d-dimensional, ( d - 1  )-dimen- 
sional, and mean-field fixed points. In Section 5 we show that the effective 
exponents satisfy natural analogs of the standard scaling laws, including 
hyperscaling. Finally we present our conclusions in Section 6. 

2. T H E  L A R G E - N  L I M I T  

The O(N) "microscopic" Landau-Ginzburg-Wilson Hamiltonian for a 
d-dimensional film geometry of thickness L is given by 

+ ~.t. (9"q~")Z-H"(x) q~") (2.1) 

We will consider 3 4 d 4 4 and assume that all the temperature dependence 
of the model is contained in the variable rl~. The explicit form of this tem- 
perature dependence is not prescribed by the model and requires a separate 
ansatz. 

The partition function Z is obtained by performing the path integral 
over the order-parameter fields q)" with the Hamiltonian (2.1). The gener- 
ator of one-particle irreducible vertex functions G [ ~ ] ,  where ~" is the 
induced magnetization, is the Legendre transform of W [H ]  = - l n  Z. If the 
sources H" and r~ are taken to be homogeneous, then for a translationally 
invariant system ~" is also homogeneous and in the direction of H" and 
G [ ~ ]  = VF[~], where V is the volume. It is convenient, however, to retain 
the general case for the moment. The vertex functions F "  ..... "1 are the 
objects of primary interest to us, as once these are known, all the correla- 
tion functions of the theory can be reconstructed from them. 

In general for the O(N) model there are two types of modes: those 
along the direction picked out by the field, H", and those perpendicular to 
it. If we choose the direction of the field to be given by the unit vector n", 
then using the two projectors pah p~,=~,,b ,, h -1 =n"n I' and _,  o - n  n ,  we can 
decompose a general vertex function into block-diagonal form. We denote 
a generic vertex function by F~N!~,...,, where the number of l and t sub- 
scripts indicates whether a longitudinal or a transverse propagator is to be 
attached to the vertex at the corresponding point. When all subscripts are 
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either l or t we will use a single 1 or t; for example, F~/V!, will be 
abbreviated F~, N). 

Due to Ward identities it is sufficient to know only the F(, u~, as all the 
other vertex functions can be reconstructed from these. For  the transla- 
tionally invariant case with homogeneous H the Ward identity F~ ~ =  F~,2~ 
implies the equations of state 

M'-~=H,  F{,"=O (2.2) 

where F~,-~' = M 2. Decomposing U "') yields F~ 2~, /'(t 2), and F ~  J and Ward 
identities imply 

./" (4 } 
F~2)_ 121  - ' - 2  

- F ,  + 3 q~ and F ~ ' = O  (2.3) 

The large-N limit is taken such that N;ts is held fixed as N--, ~ .  In 
this setting it is possible to obtain exact expressions for the vertex functions 
of the theory. One can do this either by a direct resummation of the 
Feynman diagrams or via a saddle-point approximation. In the latter 
approach the introduction of an auxiliary field ~, allows one to reduce the 
~o 4 interaction to a quadratic interaction term and an integral over the 
auxiliary field and to perform the now Gaussian cp integral, which yields 
the effective Hamiltonian ~rr(~P, H). 

In the large-N limit the integral over ~, can be done in a saddle-point 
approximation, the saddle-point condition O,~n./OM'-= 0 implying 4 

6M 2 
- r + ~ 2 + O  (2,4) 

NXs 

where 

6re 
M Z = r s + q / 4  3 " '  r = N 2 R '  c'b=x/'N 

and the origin of r s has been shifted to cancel any cutoff dependence of C). 
The effective Hamiltonian ~n-evaluated at the saddle point then yields the 
leading large-N behavior of W[H, M2]. A Legendre transform yields 
F[(~, M 2] + F~eg[ r e, A] = W+ H~, where cp = - a W/ OH and F has been 
split into a singular part F [ ~ ,  M2],  which vanishes at the bulk critical 

We use the diagrammatic notation of re/'. 2, where any cutoff dependence o[ the diagram has 
been canceled against part oft, ,  and ( - I J* - ~/(k - I )! times the kth derivative with respect 
to r n of a circle with no dots will be represented by a circle with k dots, the dots representing 
the point at which each derivative acts. 
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point, and a remaining regular part ./'reg[rB, A]. The function F [ ~ ,  M 2] 
determines the singular part of the free energy density to which it is related 
by kB T. 

Using (2.4), we can express the singular part of the free energy per 
component /~  in the form 

where g = N2uM d-4, while the regular part is given by 

.f'reg['/'B, A ]  --  3r~ 2N2~ + cutoff-dependent terms (2.6) 

All vertex functions of interest can be obtained by differentiation of (2.5) 
with the dependence on rn and ~ specified by (2.4), and given the Ward 
identities, we need only specify the even transverse vertex functions FI, m. 

For  later convenience, with H = 0, we define g = F ~~ ~1 and ~ = -Ft~ 
When the temperature dependence of r~ is taken to be 

r B =  A 2 T -  T,.( oo ) (2.7) 
T 

we have g and ~ proportional to the internal energy and specific heat, 
respectively.C ~ s 

For a d-dimensional film ( d < 4 )  with periodic boundary conditions 
the basic generating diagram is 

�9  L ) =  
F(-d /2 )  M d 2 

(47r)a/2 (4n)la-,i/2 F((d+ 1 )/2) L a 

f f .  qa 1 x dq x / ~  + z2 exp(~/q 2 + z2) - 1 

At M = 0 we have C)(0, L) = -a , i /L a, where aa is the universal number 

(2.8) 

2F(d/2) ((d) 
a,I=2Ld{F r , , ~ , - T ' l r , , c , } -  real2 (2.9) 

In the small-g limit we obtain mean-field results, while the universal scaling 
form, governed by the limit g ~ co, is 

1 if(d, z) - ad 
P = ~ ( O - - M 2 0 )  - 2L d (2.10) 
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where z =  ML, and the scaling function aJ(d, z) vanishes at z = 0  and is 
given by 

d - 2  2 
~r - )  -a,,=Ta,,z" (4n)<a 1~/2 F((d+ 1)/2) 

i 
-" q-' + ~ ( d -  1 ) z 2 • dq qd-2 
} x / q  2 + z2[  e x p ( x / / ~  -t- z 2 ) - -  I ] 

For d =  3 the result simplifies to 

(2.11) 

z 3 l s  y2 
(r z ) = 1 - ~ + ~ - ~  e " -  1 

w i t h  a 3 = r 
The tadpole, O(M,  L), has the useful decomposition 

bd 
O(M,  L) = - M  a "-~.~(d, z) + Ld_ 2 (2.12) 

where 

F ( ( d -  2)/2) r  2) 
b ,1 = 2 n d/2 (2.13) 

and M d 2~  vanishes at M =  0 with 

.~(d, z) = a a -  z 2 -,i I 2 
(4n),a- iv2 F ( ( d -  1 )/2) 

f f  qa- 2 1 
x , d q x / ~ + z 2 e x p ( . v / ~ + z 2 ) _  1 

ba] (2.14) 

and aa = - F( ( 2 - d)/2 )/( 4n )a;2. 
The critical temperature is determined by the zero of the right-hand 

side of (2.4} with ~---0. Since we have chosen the origin for the parameter 
rt~ to be the bulk critical temperature T,.(or), it is convenient to introduce 
an alternative parameter t/j whose origin is the film critical temperature. In 
general the two do not coincide, but differ by a shift riB(L) so that tz~= 
rI~+AB(L) and (2.12)implies 

N28 ba 
AB(L ) - -  _ _  

6 L a 2  
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With the temperature dependence (2.7) we see that  

A2 T,.(oo)- T , , ( L ) - A n ( L )  (2.15) 
T<.(L) 

The film critical temperature is suppressed relative to the bulk one (since 
ba is positive) and scales with the shift exponent  d - 2  = 1/v(d), v(d) being 
the bulk correlat ion exponent,  all of  which is in agreement with the lattice 
results o f  Barber  and Fisher ~~ and later calculations of  ref. 16, Further-  
more, since ba diverges at d = 3, we see that for a three-dimensional film the 
critical temperature  T,.(L) is driven to zero and more  careful analysis is 
appropriate.  

In the universal (g--* oo) limit M(r ,  93, L) is determined by 5 

b <1 ~ ' 5 L a - 2 i . l ,=~ I(d,z'-)=za 2.~;(d, 7.), where w =  r+L--7~_2+q~- j (2.16) 

In terms of  the basic scaling variables 

f ba \ 
I@l-'' and y = L I~["')/"l) 

with v ( d ) = l / ( d - 2 )  and f l (d )=l /2  the bulk d-dimensional exponents,  
w = ( 1 + 2) y~l,.c,z~. For  the large-N limit, irrespective of  whether we consider 
the universal limit or  not, only the combina t ion  r + I~1 ' / '  plays a role. This 
has significant consequences for the effective exponents to be considered 
later, since there is a reduction from two to one variable in the scaling 
functions. 

The equat ion of  state is given by 

~(d, w) 93L -)llsia) = B (2.17) 

w h e r e / 4  = H/x /~ ,  the asymptot ic  forms of  which are 

a Tr('ll(l+2)r~'l'93'~"li=F1 for z ~ o v  

( L y '''') 
- -  ( l +.rc)~'la'~ 93'~"r~ = H for z ~ 0  

\rr <;,/ 

(2.18) 

5 More generally, if we do not take tile universal limit, we have the more general two-variable 
,) scaling lbrm - -=  ~(d, v, w), where e= N21~L '1-4. 
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where 6(d)= ( d +  2 ) / ( d - 2 )  and d ' =  d - 1 .  Both limiting forms agree with 
the usual universal form of the equation of state c t7~ aside from the factors 
of G7 }"al and (L/a,c)}'~a'% which could be absorbed into a redefinition of r~ 
and/~.  We choose not to absorb dimension-dependent or L-dependent fac- 
tors into our variables, as we are interested in a problem involving two 
dimensions at once with L the interpolating physical variable. 

Similarly, /~ has the asymptotic forms 

/~= Pa( 1 + 2) 2 - ~,/~ rbl_, - :ca~//s~a~ f o r  z--~ oo 

P = L ~ ~1,/' ~p,/, ( 1 + if) 2 - ~, ,c~ ~ ~_, - ~l ,r~ v/sl d'~ q a a 2L a for z ~ 0  

(2.19) 

where pa= �89 rY~a~-,/t and ~(d) = ( d - 4 ) / ( d -  2). 
For d approaching three, the film critical temperature T,.(L) is driven 

to zero as b,i diverges with a simple pole at d = 3. There is a similar pole 
in r  ~, which cancels in O ( M  2, L), and (2.16) becomes 

(2.20) 
z 1 

(r + & ' ) L  = ~ +~-~ ln[ 1 - e---] 

in agreement with ref. 10, which restricted consideration to the zero-field 
case, H = 0 .  It is convenient to define w = ( r + ~  2) L, which with (2.20) 
implies 

~(3, w)={21nleXp(2rcw'+x/exp(4rcw'+4]}2 
2 (2.21) 

Then (2.21) together with (2.17) specifies the universal equation of state. 
Similarly (2.10) with (2.11) and (2.21) specifies F. 

For L-+ oo we have w--+ oo and we recover the three-dimensional 
scaling function (2.18) discussed above, and, for fixed L with { 1 =  
M -~---, oo, the two-dimensional critical regime, which is governed by 
r ~  -oo ,  and (2.20) gives 

~z_ = L exp[ - 2zr(r + q?2) L]  (2.22) 

in agreement with the H = 0  result of Singh and PathriaJ ~8~ The limiting 
form of the equation of state becomes 

{ exp[4n(r(L)  + ~b2)] } ~b =/7,  where 
1 

r(L) = r - - - l n  L (2.23) 
2nL 

in agreement with ref. 10, 
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The other special dimension of interest is d = 4 ,  where C) has an 
ultraviolet divergence. In this case it is necessary to send 2~ to infinity in 
such a way as to cancel the divergent contribution from C) and render F~, 4~ 
finite. We then find the constraint retains logarithmic corrections to scaling 
and becomes 

1 Ij'- q2 1 
2~ 2 d q x / ~  + z~- exp(x/q2 + z2)_ 1 (2.24) 

where =o = x L  with h" a remnant microscopic scale, such that M ~  x. 
Similarly the free energy scaling function is given by 

Z4(  
ff(4, z ) =  3~-r 2 + In  

, / . : t ,  ~ - -  3 ~ ~ 2  

1 Jo dqq" q-+2z- 
3 7 r 2  ~ [ e x p ( ~ / q - 5  + z2) - 1] + ~  (2.25) 

with a 4 = ~r2/45. For  M-~  0 with fixed L we recover the three-dimensional 
results above, and for L--* ov the constraint becomes 

r+~b 2 1 ~ In (2.26) 
K 2 (4g) 2 

while F becomes 

r ' - -  ~ + I n 5  (2.27) 

3. E N V I R O N M E N T A L L Y  F R I E N D L Y  R E N O R M A L I Z A T I O N  

The purpose of this section is to use RG techniques to recover the 
scaling functions in the large-N limit. As before, we assume that the finite 
system also ~xhibits critical behavior and that 3 ~<d~<4. We will restrict 
our considerations to a film geometry with periodic boundary conditions. 

We indicate by tA(M) that temperature parameter which yields the 
transverse correlation length ~L = M-~. The RG method is to change from 
the original bare parameters to new renormalized ones given by 

t(M,h')=Z,~:lta(M), 2(K) = Z~.(K) 2o, ~(K)=Z~I/2~o 
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and 

F c N .  LI N/'~ L ]"~BN.L) -- , I , , ) t K  ] = Z ,a  - ( K )  g~o,_(K ) + 6NOOL, , ,~  ~ ,, 

where h" is an arbitrary renormalization scale. The 
functions then obey the RG equation 

d F'N.L'+(L, , , , ,_--Ny, , )F"V.m=,,vo6L, ,B'" '  

where the Wilson functions in the above are 

/ = 0 , 1 , 2  (3.1) 

renormalized vertex 

(3.2) 

d In Z, e and 7 , / =  d In Z,e,_ 
)"P - d in K d In x 

The final Wilson function is y;. = d i n  Za/d ln  x and is related to the beta 
function fl(2) through the relation Y~L =fl(2)/2. 

The normalization conditions which fix the particular parametrization 
we will use to describe physical quantities are 

0 C~ ) 
(i) /"~,2)[Np=K2; (ii) ~ 2 F , - I M , = I  

(iii) _,Vc4)lNp=2; (iv) /-'ll2"~lNp=l 

(3.3) 

where the subscript t refers to the transverse vertex functions and NP to 
the normalization point. A simplifying feature in considering the large-N 
limit is that the separate dependences on ~ and t B merge into a dependence 
on the transverse correlation length. We choose our normalization point to 
be at zero momentum, fixed L, and an arbitrary fiducial transverse correla- 
tion length x-~. Conditions (ii)-(iv) determine the Wilson functions, which 
have explicit dependence on h'L, while (i) determines the relationship 
between x and the physical variables t, c~, and 2. 

To generate the equation of state and free energy for comparison with 
the results of Section 2 we start with the differential statement 

d i - q  2) / , 12 .  I ) I ~4) = dt+-gF,  d~ 2 v . - - ,  - - t  (3.4) 

If we integrate this relation along a contour of constant magnetization 
from the critical isotherm t = 0, we obtain 

(21 F,  (t, ~) = FI,2~(0, qS) + F~,2"*'(t',q)dt ' (3.5) 
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From the definitions of the Wilson functions implied by the normalization 
conditions (3.3), on inverting the relation (3.5), we find 

(2--y.p(x)) exp - )..p._(x ) x'  JJ x d x  

[ (L: =~:'"""'(2-L,(X)) exp - ),,2(x)x, }j xdx {3.6) 

Above we have the relation M = M(t, c~), but parametrically in terms 
of M(0, c~). We can determine the latter as an explicit function of c~ by 
integrating along the critical isotherm from the critical point. If we 
integrate (3.4) along the critical isotherm up from the critical point, we find 

~,, C'i': F',4'(x) . 
F,-  (0, cp)=J0 ~ ax (3.7) 

By choosing the normalization point NP in (3.3) on the critical isotherm 
such that the transverse correlation length is h'-~ and at zero momentum, 
we can express F c4) in the form 

- - t  

[L ,,,,0.., 
FI, 41 =2(K) exp . (~a.(x) - 2~,p,(x)) (3.8) 

where ~;.(x) and )~,p_,(x) are the resulting Wilson functions from this 
prescription. Inverting (3.7), one finds 

o2~ [ (L =7~(, (2-~,,(.x-)) exp - . ( ~ a . ( x ' ) - ) 3 , , ( x ' ) ) 7 ) ] x d x  (3.9) 

The two equations (3.6) and (3.9) specify completely the relation 
between the transverse correlation length, temperature, and magnetization. 
Finally, since the transverse correlation length is infinite on the coexistence 
curve, i.e., M(t . . . . .  cp) = 0, the equation of the coexistence curve is given by 

[ ( L" [~l.t,)..,~ (2--X.,(x)) exp X.,-'(x') x ' / J  t +'~0 - -  " 

where M(O, c~) as a function of ~ is determined by Eq. (3.9). 
The specific heat and the energy density can be treated in a similar 

fashion to the above by beginning with the differential relation 

dFCO.2) =/-1o.3~ dt + I / - ' 1 2 . 2 )  d(~2 
2 ~ t  (3.11) 

822, 87,1-2-20 



2 8 4  O ' C o n n o r  e t  al. 

By integrating along a contour of constant ~ up from the coexistence 
curve, we obtain 

[ (;, ( 2 - y ~ ( x ) )  exp 2 ~- y~_.(x')~7.,)J F'~ (3.12) 

and 

F ' ~  L (2 -- ,',p(x)) exp --L-,'~o-'(x ) 7 ) J  F'~ {3.13) 

where 

(0,31 121 3 
fflo,3~(M ) - -  F ( / " t )  

~2.,I 3 d (3.14) ( r ,  ) M 

The advantage of integrating up from the coexistence curve is that we can 
extract the singular part by requiring that both F ~~ and F ~~ vanish 
there. We can impose such boundary conditions only at the critical point 
in the special case of a < O, which is the case for the large-N limit. A bound- 
ary condition at some other point is also possible, but the formulas are 
more complicated. Finally, the free energy is given by 

F=FIr,.~L~+ (2-y,p(x)) exp - y,p_,(x') x' J]  

The necessary ingredients in the above prescription are ),,. ~,. and 
/~,~,31 together with the initial conditions for the integrations above. For 
the large-N limit we can evaluate them exactly. We find diagrammatically 
that 

0 
Fl~ = N Ma_----~, (3.16) 

which can be related to derivatives of the scaling function ~-. In terms 
of the floating coupling h, ~2~ chosen so as to make the coefficient of the 
quadratic term in the resulting fl function unity, one finds 

fl(h, z ) =  -e(z) h+h  2 (3.17) 

and 

y,p2(h,z)=yj.(h,z)=h, ~,~o = 0 (3.18) 
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where the function e(z) is 

e(z) = 6z20(z)/O(z) -- 2 (3.19) 

Similarly for the critical isotherm we have 

~,d_(h, z) = ~x(h, z) =h, ~,p = 0  (3.20) 

Equations (3.18) and (3.20) imply that ~=X~2 and hence with (3.9) 
we find that (3.6) becomes 

to + 2oq~2 2 :dXex p (2_h(x,))dx"~ 
6 /~2 ~ ,, x' } (3.21) 

where h, the solution of (3.17), is 

dx~>l~<h_i_[ex p -" dx'~] .~} h 'z ' z~176 ~ ~ (-fa, e(X"x'JJ 

(3.22) 

with zo = ~coL, 2o = 2(Ko), and to = t(M, Ko). The steepest descent constraint 
of the large-N limit has now been recovered in the form (3.21). 

In (3.22) the initial coupling is specified at the "microscopic" scale t,'o. 
For d <  4 this microscopic scale can be sent to infinity while maintaining 
ho finite. A universal floating coupling 

h(z) = 422@(2)/0(2) 

which is the separatrix solution of the differential equation, is obtained. If 
this solution is used in (3.21), we obtain 

2oC~ 2 N2o Ma_2~.(d ' z) (3.23) 
t o -t 6 6 

where 

20 = 6/NO(K0) 

is the initial dimensional coupling corresponding to the separatrix solution. 
In the asymptotic regime, (2.8) implies 2o = 12~c 4 a/N(d-2)G;. We have 
recovered using RG arguments the universal form of the spherical con- 
straint (2.16), where now r(L)= 6to/2 o. The further integration (3.15) gives 
the free energy scaling function. If one is interested in corrections to 
scaling, as is usually the case in comparing with experimental data, then K o 
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should be left finite and fitted to the data. The cases of d =  3 and d = 4  
require special care. For d =  4 one cannot ignore h o, but when appropriate 
care is taken one recovers the results of the previous section. 

4. EFFECTIVE EXPONENTS IN THE LARGE-N L IM IT  

A very useful way of representing a large class of scaling functions is 
in terms of effective critical exponents, which are functions that inter- 
polate between the constant critical exponents associated with the different 
asymptotic regimes that characterize the crossover. 

We define, for T >  T,.(L) and H = 0 ,  an effective critical exponent 

d In ~._~RL 
V~n= d In , = o  

where ~L is the correlation length associated with the transverse dimen- 
sions, i.e., the correlation length in the infinite dimensions [ remember that 
t~ ~ T -  T,.(L)]. One finds from (2.4) that 

( 1 + 6/g.~ ) 
Yen= d - 2 + d l n  .~/dln z+ 12/g/P (4.1) 

The coupling g governs the crossover from universal to mean-field-like 
behavior when g ~  0, where vc~r~ 1/2. In the critical regime, where z ,~g  
and 1 <g,  the terms proportional to g -  ~ may be neglected, thus yielding 
a true universal scaling function. From (4.1) we see that as z ~ 0 ,  then 
v~n.-, I / ( d -  3), whereas for z ~ ~ ,  vc~r-~ 1/ (d-  2). Thus v~tr interpolates 
between the two exact asymptotic values associated with the spherical 
model in d and d -  1 dimensions. 

The effective exponent y e n - = - d l n z / d l n t ~ ,  where z = M  -2 is the 
susceptibility for H =  0. is given by 

7~n=2 d - 2  +dln~.~/dlnz  + 12/g.~ (4.2) 

In the mean-field limit )'~n---* 1, whereas in the universal limit (g ~ oo) we 
have ),~n.-, 2 / ( d -  3) as z - - ,0  and y~n.~ 2 / ( d - 2 )  as - ~  co. Thus ?'~n also 
captures both the dimensional crossover and the mean-field one. 

For T <  T,.(L) and H =  0, while v~n. and Y~n are ill defined, the effective 
exponent fl~n.= d ln ~/dln ItBI is well defined. From the saddle-point equa- 
tion (2.4), due to the vanishing of the transverse mass on the coexistence 
curve, we see from (3.23) that ~2=6t /2 ,  which implies that fl~rr = 1/2, i.e., 
there is no crossover as one proceeds along the coexistence curve. This is 
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in s t rong distinction to the Ising model ,  where there is a crossover  between 
the critical point  and the s t rong coupl ing discontinuity fixed point  at T =  0. 
The contras t  is due to the fact that  the coexistence curve is a line of  first- 
order  transi t ions for N = 1 and a line of  cont inuous  transi t ions for N > 1. 

For  the app roach  to the critical point  as a function of field H on the 
critical i sotherm T =  T~.(L) we define an effective exponent  

d i n  H 
(~cll" ~ ~ /B 0 

This implies that  

F ,4 , -2  (d+ 2 + d in  ~.~/dln -_ + 36/g.~~ 
6~n-= 1 + - - '  q) = (4.3) 3FC, 2' \clZ 2 + dln.T/dln -~ ~ /  

which interpolates between the mean-field and the respective d and d '  
critical exponents.  

The  specific heat  and the energy density may  also be discussed in 
terms of effective exponents.  We may  define 

d i n  ~' d In 
oc" - and l " - 

~n-- d l n  tR - % n -  d i n  t~ 

where cg. is the specific heat and d is the energy density for H = 0, respec- 
tively. F r o m  the definition of 0~"~n- we have 0c"~n--- 1 - -t~--~t r',~.-'~/t',~.l/_B ~, which 
gives 

oC' - (  d - 4 + d l n . f / d l n z  
~tr- \ d -  2 + d l n / ~ / d  In z + 12/g.~] 

(4.4) 

The specific heat  effective exponent  is more  cumbersome;  however,  both  
vanish in the mean-field limit and in the universal limit yield effective 
exponents  that  interpolate  between ~(d) and e (d ' )  as z ranges f rom zero to 
infinity. For  T <  T,. on the coexistence curve the singular parts  of  the 
energy density and the specific heat  are identically zero, implying the 
associated ampli tudes  are zero and the associated effective exponents  are 
ill-defined. 

5. EFFECTIVE  E X P O N E N T  S C A L I N G  L A W S  

We now make  some observat ions  concerning certain algebraic rela- 
tions between the effective exponents.  Equat ions  (4.1) and (4.2) and the 
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fact that qr due to the vanishing of ),~, in the large-N limit yield the 
relation 

y~,r = v~n-(2 - T/~,r) (5.1) 

and the expressions for )'r ~ ; . ,  and fl~n imply 

Note that these relations hold even for the more general scaling functions 
that include the crossover to mean-field theory. The exponent ~{rr, however, 
does not satisfy this relation. We see then that direct analogs of the normal 
scaling laws between exponents hold; however, here the relations are 
between entire scaling functions. 

It is natural to ask if there are analogs of other scaling laws, in par- 
ticular hyperscaling, where 2 -  = = yd. This cannot be achieved with fixed 
d; however, one can define the notion of an effective dimensionality d~. n 
such that an effective hyperscaling law is valid. Defining d~r= (2 -oc~c)/v~, 
one finds 

, / d  + d In .~-/d In z + 24/g~-) 
d ;n" = L 1 + 6/go~ (5.3) 

In the mean-field limit, d~n.--+ 4, i.e., the upper critical dimension, as one 
might expect. In the limit z--, oo, one finds d~T--+ d, while in the limit z--+ 0 
for fixed L, d~n---+(d-1). Of course one could also define an effective 

" d" - dimensionality via %n as cJr-(2-cx~rr)/v~t r. Again it interpolates between 
4, d, and d - 1  in the apropriate asymptotic limits. However, since the 
exponent ~x~, r did not satisfy the scaling law (5.2), we do not expect d{j r to 
satisfy corresponding laws and in fact it does not. 

We might enquire now as to the validity of other scaling laws that 
involve the dimensionality explicitly. Noticing that d~n-=2+ 1/v~a [i.e., 
V~,r = l / ( d ~ r  one arrives at the scaling relations 

f l  ycff  l r l e  
~ t r -  2 ~" ~rr- "- 4 q~n), 

/,d~n,+ 2 _  qCn, ~ 
(5.4) 

The standard exponent relations, including hyperscaling, tell us that two 
exponents and the dimensionality are sufficient to specify all other 
exponents. In the N--+ 0o limit the dimensionality alone is sufficient to 
determine all exponents. What we have found is that the six scaling func- 
tions ~ n ,  v~n-, Y,n, r/~r, 6Jr, and fl~er can analogously all be expressed in 
terms of the one function d~ r by natural analogs of the scaling laws. 
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6. C O N C L U S I O N S  

We have studied dimensional crossover for a d-dimensional film with 
periodic boundary conditions in the exactly solvable large-N limit of an 
O(N) Landau-Ginzburg-Wilson model, a model that also includes cross- 
over to mean-field behavior. We obtained the scaling forms of the free 
energy and equation of state and extracted their universal limits where the 
crossover to mean-field theory is eliminated. We studied the model using 
both direct methods and the techniques of environmentally friendly renor- 
malization and were therefore able to compare this RG approach with an 
exact solution obtained by other means. 

In the RG approach the equation of state was found by choosing nor- 
malization conditions at a fiducial value of the transverse correlation length 
and integrating it along particular contours in the (t, 4) phase diagram, 
first along a contour of constant magnetization and second along the criti- 
cal isotherm. Both contours together yield a complete description of the 
phase diagram of the model. 

Effective exponents were defined which exhibit both dimensional cross- 
over and the crossover to mean-field exponents. They were found to obey 
natural analogs of the standard scaling laws. In the case of hyperscaling 
this necessitates the introduction of an effective dimensionality dc~-which 
interpolates between d and d - 1  and in terms of which all the effective 
exponents can be expressed. 

It is natural to ask whether or not the effective exponent laws extend 
to the case N # co. The underlying function governing all effective exponents 
is the free energy scaling function P, from which other thermodynamic 
quantities are derived by differentiation. Singular ones then have two 
asymptotic scaling forms, for example, a thermodynamic function P has the 
form 

P ~ A,r (L) I T -  T,.(L)I -""  + S,IL -,,,a, 

in the neighborhood 6 of T,.(L), and for L--+ co, T ~  T,.(~) it takes the 
form 

P ~ A  +- I T -  T,.(oo)l-~' d 

6 General ly ,  Ibr con t inuous  t rans i t ions  one would  expect  S+a = S,/  and  we asst, me this here. 
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Quite generally one can decompose the scaling function P throughout the 
crossover into the form 

(6.1) 

where at the respective asymptotic endpoints A • gives the amplitude, 0 the 
exponent, and S • any shift that may have arisen in the thermodynamic 
function. However, in the crossover region this division is somewhat 
arbitrary. In the case of an effective exponent defined as the logarithmic 
derivative of P,. = P - S a I L  ''~'~ with respect to T -  T,.(L) the decomposition 
is forced to take the form 

In the large-N limit we have found that this decomposition has the further 
property that for an appropriate definition of effective exponents all the 
usual scaling relations are obeyed. 

The reason such scaling laws are obeyed originates in the fact that P 
involves t and ~b only in the combination 

w = ((~2 + r) Ll ,"+ba 

so that derivatives with respect to r and with respect to c~ are intimately 
related. This explains why the energy rather than the specific heat provided 
the effective exponent that yielded the scaling laws. 

In general the decomposition (6.2) may not be possible, and is not 
expected to give effective exponents that obey scaling laws. However, we 
can choose a rather natural division into amplitude and effective exponent 
in the form (6.1) where the exponents do obey all the usual scaling rela- 
tions, including hyperscaling. A particularly convenient choice is that 
associated with separatrix exponents as advocated in ref. 2, where the basic 
building functions are ),,p, ),,p_,, and ),;. evaluated on the separatrix solution 
of the RG flow that connects the d and d' fixed points. Under such a divi- 
sion the amplitudes are nonsingular functions of t and L that interpolate 
between the d- and d'-dimensional amplitudes and the exponents capture 
all the singular behavior in the scaling functions. The shift is unaffected by 
this choice and retains the form SaL -~~ 
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